Mutation of Ser172 in Yeast β Tubulin Induces Defects in Microtubule Dynamics and Cell Division

نویسندگان

  • Fabrice Caudron
  • Eric Denarier
  • Jenny-Constanza Thibout-Quintana
  • Jacques Brocard
  • Annie Andrieux
  • Anne Fourest-Lieuvin
چکیده

Ser172 of β tubulin is an important residue that is mutated in a human brain disease and phosphorylated by the cyclin-dependent kinase Cdk1 in mammalian cells. To examine the role of this residue, we used the yeast S. cerevisiae as a model and produced two different mutations (S172A and S172E) of the conserved Ser172 in the yeast β tubulin Tub2p. The two mutants showed impaired cell growth on benomyl-containing medium and at cold temperatures, altered microtubule (MT) dynamics, and altered nucleus positioning and segregation. When cytoplasmic MT effectors Dyn1p or Kar9p were deleted in S172A and S172E mutants, cells were viable but presented increased ploidy. Furthermore, the two β tubulin mutations exhibited synthetic lethal interactions with Bik1p, Bim1p or Kar3p, which are effectors of cytoplasmic and spindle MTs. In the absence of Mad2p-dependent spindle checkpoint, both mutations are deleterious. These findings show the importance of Ser172 for the correct function of both cytoplasmic and spindle MTs and for normal cell division.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in a β-tubulin disrupt spindle orientation and microtubule dynamics in the early C. elegans embryo

The early Caenorhabditis elegans embryo contains abundant transcripts for two α-and two β-tubulins raising the question of whether each isoform performs specialized functions or simply contributes to total tubulin levels. Our identification of two recessive, complementing alleles of a β-tubulin that disrupt nuclear-centrosome centration and rotation in the early embryo originally suggested that...

متن کامل

Microtubule Regulation in Mitosis: Tubulin Phosphorylation by the Cyclin-dependent Kinase Cdk1□D

The activation of the cyclin-dependent kinase Cdk1 at the transition from interphase to mitosis induces important changes in microtubule dynamics. Cdk1 phosphorylates a number of microtubuleor tubulin-binding proteins but, hitherto, tubulin itself has not been detected as a Cdk1 substrate. Here we show that Cdk1 phosphorylates -tubulin both in vitro and in vivo. Phosphorylation occurs on Ser172...

متن کامل

CHAPTER Structure – Function Analysis of Yeast Tubulin 22

Microtubules play essential roles in a wide variety of cellular processes including cell division, motility, and vesicular transport. Microtubule function depends on the polymerization dynamics of tubulin and specific interactions between tubulin and diverse microtubule-associated proteins. To date, investigation of the structural and functional properties of tubulin and tubulin mutants has bee...

متن کامل

Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1.

The activation of the cyclin-dependent kinase Cdk1 at the transition from interphase to mitosis induces important changes in microtubule dynamics. Cdk1 phosphorylates a number of microtubule- or tubulin-binding proteins but, hitherto, tubulin itself has not been detected as a Cdk1 substrate. Here we show that Cdk1 phosphorylates beta-tubulin both in vitro and in vivo. Phosphorylation occurs on ...

متن کامل

Colchicine-like β-acetamidoketones as inhibitors of microtubule polymerization: Design, synthesis and biological evaluation of in vitro anticancer activity

Objective(s): In this study a series of novel colchicine-like β-acetamidoketones was designed and synthesized as potential tubulin inhibitorsMaterials and Methods: The cytotoxicity of the novel synthesized β-acetamidoketones was assessed against two cancerous cell lines including MCF-7 (human breast cancer cells) and A549 (adenocarcinomi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010